Analytic Realization of Relative K-Homology on Manifolds with Boundary and Pairing with K-Cohomology

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Relative K-stability and Modified K-energy on Toric Manifolds

Abstract. In this paper, we discuss the relative K-stability and the modified K-energy associated to the Calabi’s extremal metric on toric manifolds. We give a sufficient condition in the sense of convex polytopes associated to toric manifolds for both the relative Kstability and the properness of modified K-energy. In particular, our results hold for toric Fano manifolds with vanishing Futaki-...

متن کامل

On the Equivalence of Geometric and Analytic K-Homology

We give a proof that the geometric K-homology theory for finite CWcomplexes defined by Baum and Douglas is isomorphic to Kasparov’s Khomology. The proof is a simplification of more elaborate arguments which deal with the geometric formulation of equivariant K-homology theory.

متن کامل

Relative K-homology and Normal Operators

Let X be a compact metric space. By results of Brown, Douglas and Fillmore, [BDF2], the K-homology of X is realized by Ext(X), the equivalence classes of unital and essential extensions of C(X) by the compact operators K on a separable infinite dimensional Hilbert space H , or equivalently, the equivalence classes of unital and injective ∗-homomorphisms C(X) → Q, where Q = L(H)/K is the Calkin ...

متن کامل

Index and Homology of Pseudodifferential Operators on Manifolds with Boundary

We prove a local index formula for cusp-pseudodifferential operators on a manifold with boundary. This is known to be equivalent to an index formula for manifolds with cylindrical ends, and hence we obtain a new proof of the classical Atiyah-Patodi-Singer index theorem for Dirac operators on manifolds with boundary, as well as an extension of Melrose’s b-index theorem. Our approach is based on ...

متن کامل

Connes-Chern character in relative K-homology

Lecture 1 (Pflaum): Title: Relative cohomology and its pairings Relative cyclic cohomology theory and its pairings turned out to be a powerful tool to explain crucial properties of certain invariants in global analysis such as for example the divisor flow. In this talk, the homological foundations for pairings in relative cyclic cohomology will be explained. Moreover, the relative Chern-charact...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Zeitschrift für Analysis und ihre Anwendungen

سال: 1989

ISSN: 0232-2064

DOI: 10.4171/zaa/369